Left Termination of the query pattern
p_in_1(g)
w.r.t. the given Prolog program could not be shown:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
Clauses:
p(X) :- ','(q(f(Y)), p(Y)).
p(g(X)) :- p(X).
q(g(Y)).
Queries:
p(g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b) (f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x2)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x2)
U2_G(x1, x2) = U2_G(x2)
U1_A(x1, x2) = U1_A(x2)
P_IN_G(x1) = P_IN_G(x1)
U3_A(x1, x2) = U3_A(x2)
U2_A(x1, x2) = U2_A(x2)
P_IN_A(x1) = P_IN_A
U1_G(x1, x2) = U1_G(x2)
U3_G(x1, x2) = U3_G(x2)
Q_IN_A(x1) = Q_IN_A
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x2)
U2_G(x1, x2) = U2_G(x2)
U1_A(x1, x2) = U1_A(x2)
P_IN_G(x1) = P_IN_G(x1)
U3_A(x1, x2) = U3_A(x2)
U2_A(x1, x2) = U2_A(x2)
P_IN_A(x1) = P_IN_A
U1_G(x1, x2) = U1_G(x2)
U3_G(x1, x2) = U3_G(x2)
Q_IN_A(x1) = Q_IN_A
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 10 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x2)
P_IN_A(x1) = P_IN_A
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
R is empty.
The argument filtering Pi contains the following mapping:
g(x1) = g(x1)
P_IN_A(x1) = P_IN_A
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_A → P_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
P_IN_A → P_IN_A
The TRS R consists of the following rules:none
s = P_IN_A evaluates to t =P_IN_A
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from P_IN_A to P_IN_A.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x2)
P_IN_G(x1) = P_IN_G(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_G(g(X)) → P_IN_G(X)
The graph contains the following edges 1 > 1
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b) (f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x1, x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x1, x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g(x1)
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x1, x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x1, x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x1, x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g(x1)
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x1, x2)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x1, x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x1, x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g(x1)
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x1, x2)
U2_G(x1, x2) = U2_G(x1, x2)
U1_A(x1, x2) = U1_A(x2)
P_IN_G(x1) = P_IN_G(x1)
U3_A(x1, x2) = U3_A(x2)
U2_A(x1, x2) = U2_A(x2)
P_IN_A(x1) = P_IN_A
U1_G(x1, x2) = U1_G(x1, x2)
U3_G(x1, x2) = U3_G(x1, x2)
Q_IN_A(x1) = Q_IN_A
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x1, x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x1, x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g(x1)
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x1, x2)
U2_G(x1, x2) = U2_G(x1, x2)
U1_A(x1, x2) = U1_A(x2)
P_IN_G(x1) = P_IN_G(x1)
U3_A(x1, x2) = U3_A(x2)
U2_A(x1, x2) = U2_A(x2)
P_IN_A(x1) = P_IN_A
U1_G(x1, x2) = U1_G(x1, x2)
U3_G(x1, x2) = U3_G(x1, x2)
Q_IN_A(x1) = Q_IN_A
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 10 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x1, x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x1, x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g(x1)
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x1, x2)
P_IN_A(x1) = P_IN_A
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
R is empty.
The argument filtering Pi contains the following mapping:
g(x1) = g(x1)
P_IN_A(x1) = P_IN_A
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
Q DP problem:
The TRS P consists of the following rules:
P_IN_A → P_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
P_IN_A → P_IN_A
The TRS R consists of the following rules:none
s = P_IN_A evaluates to t =P_IN_A
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from P_IN_A to P_IN_A.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(x1) = p_in_g(x1)
U1_g(x1, x2) = U1_g(x1, x2)
q_in_a(x1) = q_in_a
q_out_a(x1) = q_out_a
U2_g(x1, x2) = U2_g(x1, x2)
p_in_a(x1) = p_in_a
U1_a(x1, x2) = U1_a(x2)
U2_a(x1, x2) = U2_a(x2)
U3_a(x1, x2) = U3_a(x2)
p_out_a(x1) = p_out_a
p_out_g(x1) = p_out_g(x1)
g(x1) = g(x1)
U3_g(x1, x2) = U3_g(x1, x2)
P_IN_G(x1) = P_IN_G(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- P_IN_G(g(X)) → P_IN_G(X)
The graph contains the following edges 1 > 1